Introduction To Riemannian Manifolds John M Lee 2018
Mar Mar 09, 2021 10:19 am
Introduction To Riemannian Manifolds John M Lee 2018
pdf | 8.8 MB | English | Isbn:978-3319917542 |Author: Lee | Page: 447 | Year: 2018[/center]
Description:
This text focuses on developing an intimate acquaintance with the geometric meaning of curvature and thereby introduces and demonstrates all the main technical tools needed for a more advanced course on Riemannian manifolds. It covers proving the four most fundamental theorems relating curvature and topology: the Gauss-Bonnet Theorem, the Cartan-Hadamard Theorem, Bonnet's Theorem, and a special case of the Cartan-Ambrose-Hicks Theorem.
Category:Differential Geometry
Hosters: Rapidgator | Nitroflare
https://rapidgator.net/file/abdc0df86238e7678243dff617bfbe63/
http://nitroflare.com/view/C8ADF2F8C34F2F7/
Permisos de este foro:
No puedes responder a temas en este foro.